
Optimal bounds for dissatisfaction in perpetual voting

Alexander Kozachinskiy 1, Alexander Shen 2, Tomasz Steifer 34

1Centro Nacional de Inteligencia Artificial, Santiago, Chile
2LIRMM, Univ Montpellier, CNRS, Montpellier, France

3Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
4Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract

In perpetual voting, multiple decisions are made at differ-
ent moments in time. Taking the history of previous deci-
sions into account allows us to satisfy properties such as pro-
portionality over periods of time. In this paper, we consider
the following question: is there a perpetual approval voting
method that guarantees that no voter is dissatisfied too many
times? We identify a sufficient condition on voter behavior
—which we call ’bounded conflicts’ condition—under which
a sublinear growth of dissatisfaction is possible. We provide
a tight upper bound on the growth of dissatisfaction under
bounded conflicts, using techniques from Kolmogorov com-
plexity. We also observe that the approval voting with binary
choices mimics the machine learning setting of prediction
with expert advice. This allows us to present a voting method
with sublinear guarantees on dissatisfaction under bounded
conflicts, based on the standard techniques from prediction
with expert advice.

Introduction
Imagine a group of friends who meet every week to go some-
where together. There are several options – going to the park,
going to the cinema, and so on, but different people like only
some of the options. For example, somebody says: “I don’t
want to go to the park because it is spring and I have an al-
lergy. And I don’t want to go to the cinema because I don’t
like any of the movies that are currently showing”. Then the
other friend says: “I also don’t want to go to the cinema,
and I don’t want to go to dances, because I broke my leg”.
And so on, all friends indicate which option they approve
and which disapprove. We have to choose one option for ev-
erybody to go there. People, not approving this option, will
be dissatisfied.

This happens not once but a number of times and the pref-
erences of friends might arbitrarily change (for instance, a
person who did not want to go to the cinema now might
want to see a new movie). When we make a decision, we
assume that the preferences of friends in the future are not
known to us – we only see what they approve this week and
what they wanted in previous weeks.

This setting has been recently introduced by Lackner
(2020) under the name perpetual voting. The goal here is

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to devise a voting method that would lead to “fair” results.
For instance, what would be fair in the following situation:
8 friends meet each weekend to go for dinner, but there are
just 2 places, and 5 friends want to go to a pizza place and
3 to a curry place (never changing their preferences and ap-
proving just one of the options)? It is natural to say that we
have to choose the pizza place roughly 5/8 fraction of times,
proportionally to the number of people, wanting it.

Using simple majority vote is not a good idea here, it will
choose the pizza place all the time. Lackner gives an exam-
ple of the algorithm that will work better: each time, define
the weight of a person as 1/(1 + s), where s is the number
of times this person was satisfied, and choose the place with
a bigger sum of the weights of people that want it. One can
show that out of every 8 times, 5 times it will choose the
pizza place and 3 times the curry place.

More generally, Lackner introduced simple proportional-
ity, which is fairness in the following sense: in a situation
when preferences do not change, and everybody approves
just one option, every option has to be chosen the number
of times which is proportional to the number of people, ap-
proving this option. Lackner and Maly (2023) studied sim-
ple proportionality for two classes of voting methods called
loss-based WAMs and win-based WAMs (WAM = weighted
approval method). A loss-based WAM is a voting method
where every person gets a positive weight, which is a func-
tion of the number of times this person was dissatisfied, and
then the option with the biggest total weight is chosen. A
win-base WAM is the same thing, but the weight of a person
is determined by the number of times this person was satis-
fied. Lackner and Maly show that there is no simply propor-
tional loss-based WAM, and they characterize all win-based
WAMs.

Extending simple proportionality to a setting when agents
might approve more than one option, and, moreover, might
change their preferences over time, is a delicate task (Bul-
teau et al. 2021), and a recent work of Chandak, Goel, and
Peters (2024) gives an excellent overview of this topic. Be-
sides proportionality, Lackner (2020) have formalized and
studied other notions of fairness like the independence of
uncontroversial decisions (rounds of voting where there is
an option, satisfying everyone, should not affect the other
rounds) and dry spells (how many times a person can be dis-
satisfied in a row).

Our contribution.
In this paper, we introduce a different kind of question,
namely:
Question: Is there a voting method that guarantees that
each voter is dissatisfied only a small number of times?

In other words, we want to have a perpetual voting method
that allows us to minimize dissatisfaction of every voter.
Here, the dissatisfaction is measured as the number of de-
cisions in which the outcome is not approved by the voter.
Elkind, Neoh, and Teh (2024) studied this question in the of-
fline regime, and showed that it is NP-hard to find an optimal
way to minimize the dissatisfaction of every voter. Lackner
(2020) considered a related notion of dry spells of a voter v,
that is, sequences of consecutive decisions, during which v
is always dissatisfied, and exemplified some methods which
guarantee a uniform bound on the length of a dry spell. Our
interest is in a somewhat harder task—we want to guarantee
that each voter is satisfied often, instead of just asking for
each voter to be satisfied at least once in a while.

In the general setting, we face obstacles very quickly.
Imagine a scenario where there are two people, one of whom
approves only pizza and the other approves only curry all the
time. One of them will be unhappy half the time. If we want
a strategy whose guaranteed dissatisfaction for everyone is
sublinear in the number of decisions, we have to do some-
thing about this.

For that, we introduce a parameter called the conflict num-
ber. In the case of two alternatives, this parameter can be
defined as the maximal number of times a pair of agents
does not have a commonly approved option. In the general
case, we have to consider the same thing for all subgroups of
agents, not exceeding the size of the number of alternatives.
As we just saw, when the conflict number is not bounded
by something sublinear in the number of decisions, strategy
with the sublinear dissatisfaction is impossible. Surprisingly,
we show the converse: if the conflict number is bounded by
something sublinear, there is a strategy with sublinear dissat-
isfaction (ignoring factors that are logarithmic in the number
of agents). For that, we introduce a perpetual voting rule,
motivated by a standard machine learning method, the Ex-
ponential Weights Algorithm.

We then study the minimal achievable dissatisfaction in a
regime when the conflict number is bounded by something
negligible compared to the number of decisions. We derive
the optimal bound, which, however, we do not know if one
can reach with the Exponential Weights Algorithm or any
other computationally efficient strategy. This is because our
proof method is non-constructive, relying on inequalities for
Kolmogorov complexity.

Finally, we discuss a class of simpler algorithms, contain-
ing some of the previously studied voting rules (Simple Ma-
jority and Perpetual Equality (Lackner 2020)), and show that
they fail to guarantee sublinear dissatisfaction, even under
the bounded conflicts condition.

Formal setting and contributions
Following (Lackner 2020), by perpetual voting with k op-
tions, N agents, and T rounds, we mean the following game,

played between two players that we will call the Decision
Maker and the Adversary in rounds r = 1, . . . , T , where in
the r-th round:
• the Adversary picks N sets S(r)

1 , . . . , S
(r)
N ⊆ {1, . . . , k},

where S
(r)
i is understood as the set of options, approved

by the i-th agent in the r-th round;
• the Decision Maker picks an option θ(r) ∈ {1, . . . , k}.

We note that this setting does not assume that the set of al-
ternatives is the same at each round. We only denote by k
the maximal number of options in one round (and it can be
less than k in other rounds) and arbitrarily index these al-
ternatives by numbers from 1 to k in each round, while at
different rounds these can be essentially different alterna-
tives (like choosing a restaurant to go to one day and a park
to go to the other day)

For any play of this game, we define the dissatisfaction of
the i-th agent in this play as the number of rounds where the
option, chosen by the algorithm, was not approved by this
agent:

Di = I{θ(1) /∈ S
(1)
i }+ . . .+ I{θ(T) /∈ S

(T)
i },

i = 1, . . . , N.

In this paper, we initiate the study of strategies for the De-
cision Maker that aim to guarantee low dissatisfaction for all
agents, i.e., to minimize maxNi=1 Di. If the Adversary is un-
restricted, it can simply choose all sets to be empty every
round, making every agent dissatisfied every time. There-
fore, it makes sense to put some restrictions on the Adver-
sary. In what follows, we exactly identify structural restric-
tions on the game under which a strategy of the Decision
Maker with o(T) dissatisfaction exists. Here the number of
options is assumed to be a constant k = O(1).

To this end, we introduce the concept of a conflict. More
specifically, we say that a subset A ⊆ {1, 2, . . . , N} is in a
conflict in the r-th round if there exists no θ ∈ {1, 2, . . . , k}
such that θ ∈ S

(r)
i for every i ∈ A (no option satisfies every

agent in the subset A). Given some play in the perpetual
voting with k options, we define its conflict number as the
maximum, over all S ⊆ {1, 2, . . . , N} with |S| ⩽ k, of the
number of rounds S is in a conflict.

We start with an observation that as long as N ⩾ k,
there is no strategy of the Decision Maker in the C-conflict
perpetual voting, guaranteeing less than C/k dissatisfac-
tion. Namely, assume that for the first C rounds, the Adver-
sary makes everybody approve everything, except that for
j = 1, . . . , k, the j-th agent disapproves the j-th option.
After C rounds, everybody approves everything without ex-
ceptions. In each of the first C rounds, one of the first k
agents is dissatisfied, making one of these agents dissatis-
fied at least C/k times. On the other hand, the C-conflict
condition is trivially fulfilled as only in the first C rounds
somebody disapproves something.

This observation implies that when the conflict bound C
is linear in T , then for constant k no strategy of the Decision
Maker can guarantee o(T) dissatisfaction for everybody. We
show that, up to the poly(lnN, lnC)-factor, the converse is
also true – if C = o(T), then there is a strategy of the Deci-
sion Maker, guaranteeing the o(T) dissatisfaction.

Theorem 1. For every k there exists a constant W > 0 that
for every N,T,C there exists a strategy in the C-conflict
perpetual voting with k options, N agents, and T rounds
that guarantees dissatisfaction at most T 1−1/k ·C1/k ·(lnN ·
lnC)W .

Indeed, for k = O(1) and C = o(T), ignor-
ing the poly(lnN, lnC)-factor, this upper bound becomes
T 1− 1

k (o(T))
1
k = o(T).

Remark 1. One can get rid of the assumption that C and
T are known. Namely, assume first that T is known but C
is not. We start running the algorithm assuming C = 1.
If the maximal dissatisfaction exceeds the upper bound for
C = 1, we start again with C = 2. We continue in this
way, increasing C by a factor of 2 with each reset. The total
maximal dissatisfaction is now an exponential series, with
the last term being equal to the whole sum, up to a constant
factor. In the algorithm, we can never make our estimate of
C twice times bigger than the real one, meaning that the last
term is bounded, up to a constant factor, by the same expres-
sion. In the same way, one can get rid of the knowledge of
T .

When C is negligible compared to T , the dissatisfaction
bound becomes of order T 1− 1

k . We show that this depen-
dence on T is tight, even for C = 1, and with the number of
agents N growing as T 1/k so that lnN is also negligible.
Proposition 1. For every k and M , for N = k · M there
exists no strategy that for the 1-conflict perpetual voting with
k options, N agents and T = Mk rounds that guarantees
dissatisfaction less than Mk−1/k = T (k−1)/k/k.

Proof. Consider a strategy of the Adversary where it divides
N = kM agents into k equal groups of size M . In each
round, for every i = 1, . . . , k, in the i-th group there will be
one agent, approving everything except the i-th option, and
all the other agents of the group approve everything. There
will be T = Mk rounds, corresponding to the number of
ways to choose one agent per group.

To be in a conflict, a subset A with at most k agents has to
have one agent from every group (if there is nobody from the
i-th group, the i-th option will satisfy everybody in S). That
is, there are exactly T k subsets S that can be in a conflict,
corresponding to all ways to choose one agent per group.
For such S to be in a conflict in the r-th round, for every
i = 1, . . . , k, the agent of the i-th group from S has to dis-
approve the i-th option in the r-th round. By construction,
for every S there exists only one r with this property. Thus,
the Adversary fulfills the 1-conflict condition.

We now show that regardless of the choices of the De-
cision Maker, there will be an agent, dissatisfied at least
Mk−1/k times. Let θ ∈ {1, . . . , k} be the most frequent
option, chosen by the Decision Maker. It appears in at least
Mk/k rounds. On the other hand, every round involves ex-
actly one agent from the θ-th group, with Mk−1 rounds for
each of M agents of this group (corresponding to Mk−1

choices of agents from other groups). In one of this Mk−1-
size groups of rounds, in at least (1/k)-fraction of rounds
the option θ was elected, because at least this fraction of
rounds in total has θ. The agent of θ-th group that appears

in this group of rounds will therefore be dissatisfied at least
Mk−1/k rounds, as required.

Our proof of Theorem 1 uses the Kolmogorov complexity
technique which does not yield an efficient strategy achiev-
ing this bound. Given k,N, T,C, this strategy can be found
by a brute-force algorithm, solving the game by analysing
all its positions but it requires exponential time and space.

We also give a bound, which has worse dependence on
T , but is attained by an explicit voting rule, inspired by the
Exponential Weights Algorithm of (Vovk 1990; Littlestone
and Warmuth 1994). In this rule, every agent gets a weight
that is multiplied by a fixed factor each time this agent is dis-
satisfied, and the rule is to choose an option that minimally
increases the sum of the weights.
Theorem 2. For any k,N, T,C, there is a strategy of the
Decision Maker, guaranteeing that all agents are dissatisfied
at most:

O
(
T 1− 1

k+1 · (C · k · lnN)
1

k+1

)
times in the C-conflict perpetual voting with k options, N
agents and T rounds.

Additionally, compared to Theorem 1, this bound does not
have an additional polynomial dependence on lnC, and has
an explicit small exponent for lnN .

We conclude the paper by analyzing some simpler voting
rules and showing that they cannot lead to an o(T) dissatis-
faction, even for k = 2, C = 1, and N = O(T), when lnN
is much smaller than the number of rounds. First, we demon-
strate this for the simple majority vote, called Approval Vote
in (Lackner 2020), where in each round an option with the
most approvals is chosen, regardless of the previous history.
Second, we show this for the rule called Perpetual Equality
in (Lackner 2020), which is the majority vote but over agents
with maximal dissatisfaction (it can also be seen as the Ex-
ponential Weights Algorithm with a very large factor). In
fact, we show this for any compassionate strategy of the De-
cision Maker, which means the following property—if there
is a single agent with maximal dissatisfaction approving at
least one option, the strategy makes this agent satisfied (i.e.,
chooses an option approved by them).
Theorem 3. For any T , the Approval Vote cannot guarantee
dissatisfaction less than T in the 1-conflict perpetual voting
with 2 options, N = 2T + 1 agents, and T rounds.

Likewise, for any T , no compassionate strategy (including
Perpetual Equality) can guarantee dissatisfaction less than
⌊T/2⌋ in the 1-conflict perpetual voting with 2 options, N =
T agents, and T rounds.

Next three section contain proofs of Theorems 2, 1, and
3, respectively.

Proof of Theorem 2
Our strategy is as follows. Fixing

ε =

(
lnN

T

)1− 1
k+1

·
(

1

Ck

) 1
k+1

,

the strategy works by assigning a weight to every agent, ini-
tially 1 for everybody, that is multiplied by (1+ε) each time

an agent is dissatisfied. The strategy chooses the option that
minimally increases the sum of the weights, breaking ties
arbitrarily.

We assume that C · k · lnN ⩽ T because otherwise the
stated upper bound on the dissatisfaction is worse than the
trivial upper bound of T . Hence, lnN

T ⩽ 1
Ck , meaning that

ε ⩽ 1
Ck .

Let Pr be the probability distribution on the agents where
the probability of the i-th agent is proportional to its weight
before the r-th round. For instance, P1 is the uniform dis-
tribution on agents as all initial weights are the same. Next,
let Ar,θ be the set of agents disapproving the option θ ∈
{1, . . . , k} in the r-th round. Finally, we denote δr,θ =
Pr(Ar,θ).

If in the r-th round the Exponential Weights Algorithm
chooses an option θ ∈ {1, . . . , k}, then agents from Ar,θ

multiply their weights by (1 + ε). In other words, we add
the ε-fraction of the weights of the agents of Ar,θ to the to-
tal sum of weights. This increases the sum of weights by the
factor of (1+ ε ·Pr(Ar,θ)) = (1+ εδr,θ). Hence, the Expo-
nential Weights Algorithm chooses an option that achieves
the minimum:

δr = min{δr,1, . . . , δr,k},
and the total sum of weights gets multiplied by exactly
(1 + εδr). Therefore, in the end, the sum of weights will
be exactly N · (1 + εδ1) · . . . · (1 + εδT) as the initial sum
is N . This sum trivially lower bounds the weights of any
individual agent, from where we get a bound:

(1 + ε)Di ⩽ N · (1 + εδ1) · . . . · (1 + εδT),

and, after taking the logarithm:

Di ⩽
lnN +

T∑
r=1

ln(1 + εδr)

ln(1 + ε)
(1)

Since ε ⩽ 1
Ck ⩽ 1, we note ln(1 + ε) and ε differ by at

most some constant factor, meaning that

Di = O

(
lnN

ε
+

T∑
r=1

δr.

)
How can we estimate the sum

∑
δr? We start by bound-

ing the arithmetic mean of δ1, . . . , δT by their k-mean:

T∑
r=1

δr

T
⩽

T∑

r=1
δkr

T

1/k

.

We then bound δkr by the product δr,1 · . . . ·δr,k as δr by defi-
nition is the minimum of the factors in this product, getting:

T∑
r=1

δr ⩽ T 1−1/k ·

(
T∑

r=1

δr,1 · . . . · δr,k

)1/k

. (2)

The product δr,1·. . .·δr,k is equal by definition to the product
of probabilities

Pr(Ar,1) · . . . · Pr(Ar,k),

which is also the probability of the Cartesian product Cr =
Ar,1× . . .×Ar,k w.r.t. the probability distribution on the set
of k-tuples of agents, obtained by choosing each agent in the
tuple independently from Pr. We denote this distribution on
k-tuples by P⊗k

r . This allows us to rewrite (2) as

T∑
r=1

δr ⩽ T 1−1/k ·

(
T∑

r=1

P⊗k
r (Cr)

)1/k

. (3)

Consider any k-tuple of agents (a1, . . . , ak) ∈ Cr. By defi-
nition, agents a1, . . . , ak disapprove the 1st, ..., the k-th op-
tion, respectively, in the r-th round. This means that the set
{a1, . . . , ak} is in the conflict in the r-th round. Hence, due
to the C-conflict condition, every k-tuple belongs to at most
C sets among C1, . . . , CT . If probability distributions P⊗k

r
were all the same for different r, the sum of probabilities∑T

r=1 P
⊗k
r (Cr) would be bounded by C as every probabil-

ity of an individual k-tuple would appear in this sum at most
C times. However, these probability distributions can be dif-
ferent, and to obtain the desired bound, we will use the fact
that they change just a little from one round to another.

Namely, the Pr-probability and the Pr+1-probability of
any agent differ by at most the (1 + ε)-factor. Indeed, at any
round, the probability of an agent is computed as its current
weights divided by the sum of all weights. In one round, both
the numerator and the denominator do not decrease but can
increase by at most the (1 + ε)-factor. Hence, the fraction
can increase by at most the (1+ ε)-factor and decrease by at
most the same factor.

This means that the P⊗k
r -probability and the P⊗k

r+1-
probability of any individual k-tuple of agents differ by at
most the factor of α = (1 + ε)k. Hence, on an interval of
l = ⌈lnα e⌉ rounds, these probabilities can change by the
factor at most αl−1 ⩽ e. We claim that the sum of Pr(Cr)
within any such interval is upper bounded by e · C. Indeed,
for any r0, the sum Pr0(Cr0) + . . . + Pr0+ℓ−1(Cr0+ℓ−1) is
bounded by e · (Pr0(Cr0)+ . . .+Pr0(Cr0+ℓ−1)). In turn, the
sum Pr0(Cr0)+. . .+Pr0(Cr0+ℓ−1) is bounded by C because
any k-tuple belongs to at most C sets Cr0 , . . . , Cr0+ℓ−1.

Splitting all T rounds in O(T/l) intervals of length at
most l, we get a bound

T∑
r=1

P⊗k
r (Cr) = O

(
CT

l

)
= O

(
CT

lnα(e)

)
= O (CT ln(α)) = O(k · C · T · ε).

Combining this bound with (1) and (3), we finally get our
upper bound on the dissatisfaction:

Di = O

(
lnN

ε
+ T (kCε)1/k,

)
which for our choice of ε =

(
lnN
T

)1− 1
k+1 ·

(
1
Ck

) 1
k+1 (taken,

of course, to make both terms to be equal to each other),
transforms into the desired upper bound:

Di = O
(
T 1− 1

k+1 · (C · k · lnN)
1

k+1

)
.

Proof of Theorem 1
We start by introducing Kolmogorov complexity (Shen, Us-
pensky, and Vereshchagin 2022). For any partially com-
putable D : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ we define the con-
ditional Kolmogorov complexity CD(x|y) of x given y for
two binary strings x, y ∈ {0, 1}∗ w.r.t. D as

CD(x|y) = min{|p| : p ∈ {0, 1}∗ s.t. D(p, y) = x},

where |p| denotes the length of a binary string p. In other
words, we look for the shortest description p of x assum-
ing y is known, where D is used as a decompressor that is
supposed to produce x from its “compressed‘” description p
assuming the knowledge of y.

Different D lead to different “Kolmogorov complexities”,
but there exists an “optimal” decompressor Dopt for which
the resulting complexity function is minimal over all D with
the O(1)-precision. More precisely (Shen, Uspensky, and
Vereshchagin 2022, Theorem 17), there exists Dopt such that
for any other D there exists a constant C such that:

CDopt
(x|y) ⩽ CD(x|y) + C

for all strings x, y ∈ {0, 1}∗. We fix any optimal decompres-
sor Dopt and define the conditional Kolmogorov complexity
of x given y as C(x|y) = CDopt(x|y). We also define the
unconditional Kolmogorov complexity C(x) of a string x as
C(x|Λ), where Λ is the empty string.

We will use the observation that for any y, the number
of strings with C(x|y) < k is less than 2k. This is because
there are less than 2k descriptions of length less than k.

We can extend the notion of Kolmogorov complexity
from binary strings to any finite objects, like tuples of
strings, sets of strings, natural numbers, and so on. It only
takes to fix a computable bijection with the set of finite
objects of the type we are interested in and the set of bi-
nary strings. Then, in place of these finite objects we use
their images under this bijection when working with their
Kolmogorov complexities. It can be observed that different
computable bijections lead to complexity functions that dif-
fer only by O(1)-term.

If x and y are two finite objects, we can then define the
complexity of their ordered pair ⟨x, y⟩. To simplify the no-
tation, we will simply write C(x, y) in place of C(⟨x, y⟩).
Likewise, we will use the comma-separated notation for the
complexity of tuples of finite objects.

We will use an equality known as the chain rule (Shen,
Uspensky, and Vereshchagin 2022, Theorem 21) which
states that for any two binary strings x, y, up to an
O(logmax{C(x),C(y)})-term, we have:

C(x, y) = C(x) + C(y|x) = C(y) + C(x|y).

We define the notion of the mutual information between
two binary strings x and y:

I(x : y) = C(x) + C(y)− C(x, y).

Due to the chain rule, up to an O(logmax{C(x),C(y)})-
term, the mutual information can also be written as:

I(x : y) = C(x)− C(x|y) = C(y)− C(y|x).

For a finite set A we introduce its “irregularity parameter”
i(A) = max{C(A|x) : x ∈ A)} as the maximal complexity
of A given its element.

We need the following inequality. For k = 2, it was estab-
lished in a weaker form by Romashchenko and Zimand (Ro-
mashchenko and Zimand 2019).

Proposition 2. For any k there exists Γ > 0 such that for
any n, for any set Π of the form Π = U1 × . . . × Uk for
U1, . . . , Uk ⊆ {0, 1}n, and for every tuple (x1, . . . , xk) ∈
Π, we have:

C(Π|x1)+ . . .+C(Π|xk)

⩽ (k − 1)C(Π) + i(Π) + Γ · (log(i(Π) + n))).

Proof. We treat k as a fixed constant so that all constants in
the O(·)-notation might depend on k.

We will work with complexities of some binary strings
of length n and with complexity of the “combinatorial par-
allelepiped” Π = U1 × . . . × Uk. How large can be these
complexities? Complexity of any n-length binary string x is
bounded by n+O(1). Complexity of Π can be bounded by
i(Π) + O(n). This is because one can specify Π by any k-
tuple of n-bit binary strings, belonging to it, plus the optimal
description of Π, given this tuple. The first part takes O(n)
bits, the second takes at most i(Π) by definition of the irreg-
ularity parameter. Hence, whenever we use the chain rule, it
holds with the O(log(i(Π) + n))-precision.

We use the Romashchenko typization trick (Ro-
mashchenko 2001) and switch from some object s to
a set of objects “similar to s” (that includes s itself). For
example, a string s of some complexity m = C(s) is an
element of the set of all strings that have complexity at most
m. (We say “at most m” and not “exactly m” since we will
need to enumerate those strings.)

For a pair of strings (u, v) we might consider all pairs
(u′, v′) such that C(u′) ⩽ C(u), C(v′) ⩽ C(v), C(u′, v′) ⩽
C(u, v), C(u′|v′) ⩽ C(u|v), C(v′|u′) ⩽ C(v|u) (all com-
plexities and conditional complexities of u′, v′ are bounded
by the corresponding complexities of u and v; these pairs
can be enumerated).

In our case, for every j = 1, . . . , k, we consider objects
similar to xj in the context of a given “combinatorial paral-
lelepiped” Π = U1 × . . . Uk. Namely, we consider the set
Xj of all x′

j ∈ Uj such that all the quantities

C(xj),C(xj |Π),C(xj ,Π),C(Π|xj) (4)

do not increase when xj is replaced by x′
j . Note that we

consider only x′
j ∈ Uj (belonging to the j-th projection of

the parallelepiped), and use the entire parallelepiped (and
not only its j-th projection Uj) in these expressions.

Obviously, the set Xj contains xj , so it is not empty. On
the other hand, its log size is bounded by C(xj |Π), since its
elements have at most this complexity given Π. The crucial
observation is that this bound is O(log(i(Π) + n))-tight:

log2 |Xj | = C(xj |Π) + i(Π) +O(log(i(Π) + n)). (5)

Indeed, knowing Π and numerical parameters (complexi-
ties in (4)), we can efficiently enumerate Xj by running

the optimal decompressor on all inputs, eventually find-
ing all necessary Kolmogorov complexity upper bounds
for all elements of Xj . Thus, knowing Π, one can spec-
ify xj itself by its index in this enumeration, which takes
log2 |Xj | bits, and by numerical parameters, which take
O(log(i(Π) + n)) bits, giving us the inequality C(xj |Π) ⩽
log2 |Xj |+O(log(i(Π) + n)), leading to (5).

Next, we claim the following: for any fixed δ < 1, for at
least δ-fraction of x′

j ∈ Xj , we have that all complexities in
(5) are the same for x′

j and xj , up to an O(log(i(Π) + n))-
term, with the constant in the O(·)-notation depending on
δ. It is enough to show this for the conditional complexities
C(x′

j |Π) and C(xj |Π). Indeed, once we know that, we first
can establish the equality (with the same precision) between
the complexities of pairs C(xj ,Π) and C(x′

j ,Π) by writing

C(x′
j ,Π) =C(Π) + C(x′

j |Π)

= C(Π) + C(xj |Π) = C(xj ,Π).

To establish the approximate equality between C(xj) and
C(x′

j), and between C(Π|xj) and C(xj |x′
j , we first no-

tice that they sum up to (approximately) the same value
C(x′

j ,Π) = C(xj ,Π). On the other hand, in the sum with
x′
j both terms do not exceed the corresponding terms in the

sum for xj , by definition of Xj . This means that the corre-
sponding terms are actually approximately equal.

It remains to show the approximate equality between
C(x′

j |Π) and C(xj |Π). We have C(x′
j |Π) ⩽ C(xj |Π) by

definition for all x′
j ∈ Xj . Now, take the (1− δ)-fraction of

strings of Xj with the lowest complexity given Π, and let ℓ
be their maximal complexity so that at least the δ-fraction of
strings of Xj have complexity at least ℓ, leaving us with the
task of lower bounding ℓ. In this δ-fraction of strings there
are at most 2ℓ+1 strings (as all of them have complexity less
than ℓ+1 given Π), meaning that in all Xj there are at most
(1/(1 − δ)) · 2ℓ+1 = O(2ℓ) strings. Knowing the bound
log2 |Xj | = C(xj |Π)+O(log(i(Π)+n)), we conclude that
ℓ ⩾ C(xj |Π) +O(log(i(Π) + n)).

For the rest of the argument, we choose δ = 1 − 0.01
k .

Next, we sample a tuple (x′
1, . . . , x

′
k) ∈ X1 × . . .×Xk uni-

formly at random. With positive probability, we have that
for j = 1, . . . , k, all the quantities in (4) are the same both
for x′

j and xj with the O(log(i(Π) + n)) precision, and that
C((x′

1, . . . , x
′
k)|Π) ⩾ log2 |X1× . . .×Xk|−10. Indeed, for

any j = 1, . . . , k, the probability that some quantity is too
small for x′

j in (4) is at most 0.01/k, meaning that probabil-
ity that there exists a bad j is at most 1%, and the probability
that C(x′

1, . . . , x
′
k|Π) is too small is no more than 1% just

because there are too few tuples of low complexity.
We now fix an arbitrary (x′

1, . . . , x
′
k) ∈ X1×. . .×Xk sat-

isfying these properties. Now it suffices to prove the inequal-
ity of Proposition 2 for x′

1, . . . , x
′
k in place of x1, . . . , xk,

because all the terms in this inequality change by at most
O(log(i(Π) + n)).

As for any tuple, belonging to Π, we have:

C(Π|x′
1, . . . , x

′
k) ⩽ i(Π). (6)

Let us from now on skip O(log(i(Π) + n))-terms as all the
inequalities we will use are true with this precision (and all

complexities in question are bounded by O(i(Π) + n)). By
our choice of x′

1, . . . , x
′
k, and by (5), we have:

C(x′
1, . . . , x

′
k |Π) ⩾ log2(|X1|) + . . . log2(|Xk|)

= C(x1|Π) + . . .+C(xk|Π)
= C(x′

1|Π) + . . .+C(x′
k|Π)

Having also the inequality C(x′
1, . . . , x

′
k |Π) ⩽ C(x′

1|Π) +
. . .+ C(x′

k|Π) (the complexity of a tuple is bounded by the
sum of complexities of the strings in this tuple, with a preci-
sion logarithmic in the complexities of the strings, see The-
orem 16 in (Shen, Uspensky, and Vereshchagin 2022)), we
obtain the equality:

C(x′
1, . . . , x

′
k |Π) = C(x′

1|Π) + . . .+C(x′
k|Π). (7)

The inequality that we are aiming to prove, after adding
C(Π) to both sides, looks like that:

C(Π|x′
1) + . . .+C(Π|x′

k) + C(Π) ⩽ k · C(Π) + i(Π).

By (6), it suffices to prove C(Π|x′
1) + . . . + C(Π|x′

k) +
C(Π) ⩽ k · C(Π) + C(Π|x′

1, . . . x
′
k). The last inequality,

by definition of the mutual information, is equivalent to:

C(Π) ⩽ I(Π : x′
1) + . . .+ I(Π : x′

k) + C(Π|x′
1, . . . x

′
k).

Re-writing each mutual information in the other way, we get:

C(Π) + C(x′
1|Π) + . . .+C(x′

k|Π)

⩽ C(x′
1) + . . .+C(x′

k) + C(Π|x′
1, . . . x

′
k).

By (7), it is equivalent to:

C(Π) + C(x′
1, . . . , x

′
k |Π)

⩽ C(x′
1) + . . .+C(x′

k) + C(Π|x′
1, . . . x

′
k)

The left-hand side, by the chain rule, is equal to
C(x′

1, . . . , x
′
k,Π). Therefore, we have reduced everything to

the following inequality:

C(x′
1, . . . , x

′
k,Π) ⩽ C(x′

1)+. . .+C(x′
k)+C(Π|x′

1, . . . x
′
k).

It holds because optimal descriptions of x′
1, . . . , x

′
k, fol-

lowed by an optimal description of Π given x′
1, . . . , x

′
k, with

an O(log(i(Π) + n))-precision to indicate lengths of these
descriptions, can be turned into a description for the whole
tuple x′

1, . . . , x
′
k,Π.

We now derive Theorem 1 from this inequality. For the
proof, it will be convenient to extend the notion of a conflict
from subsets of agents to k-tuples of agents. Namely, we
say that an ordered k-tuple (a1, . . . , ak) ∈ {1, . . . , N}k is
in the conflict in the r-th round if for every i ∈ {1, . . . , k},
the agent ai disapproves the i-th option in the r-th round.
The tuple conflict number of a play is the maximum, over all
(a1, . . . , ak) ∈ {1, . . . , N}k, of the number of rounds the tu-
ple (a1, . . . , ak) was in the conflict. By the tuple C-conflict
perpetual voting we mean a modification of the game where
the Adversary has to keep the tuple conflict number of the
play at most C.
Lemma 1. The tuple conflict number of any play is upper
bounded by the conflict number of the play.

Proof. At any round a tuple (a1, . . . , ak) is in the conflict,
the set {a1, . . . , ak} is also in the conflict.

Lemma 1 implies that a strategy of decision maker, guar-
antying maximal dissatifaction at most D in tuple C-conflict
perpertual voting, also guarantees dissatifaction at most D in
the (subset) C-conflict perpetual voting. Hence, it is enough
to establish Theorem 1 for the tuple C-conflict perpetual vot-
ing.

We treat k as a fixed constant. Therefore, all constants
in the O(1)-notation below might depend on k, but not on
anything else. Next, we observe that it is enough to show the
theorem when N , T , and C are powers of 2. Indeed, to show
the bound for arbitrary N,T,C, we use the strategy for the
smallest powers of 2, exceeding these numbers. This leads
to some constant increase in the bound on the dissatisfaction
that can be compensated by increasing W .

Now, for a given n, t, c, our goal is to derive an upper
bound on Dn,t,c which is the minimal D such that there is
a strategy of Decision Maker, guaranteeing dissatisfaction at
most D in the tuple C = 2c-conflict perpetual voting with k
options, N = 2n agents, and T = 2t rounds.

We define an auxiliary algorithm Alg(n, t, c) that on in-
put (n, t, c) works as follows. First, it computes D = Dn,t,c.
It is doable because we simply have to solve a finite perfect-
information game, completely given by n, t, c. Because of
the determinacy of such games, there also exists a strategy
of the Adversary proving the minimality of Dn,t,c, meaning
that it guarantees that in any play there will be a Dn,t,c-
dissatisfied agent in the perpetual voting with these param-
eters. The algorithm Alg(n, t, c) finds this strategy of the
Adversary.

Then the algorithm converts this strategy into a strategy of
Adversary for the game with the same number of rounds T ,
with the same conflict bound C, also guaranteeing Dn,t,c-
dissatisfaction, but with N̂ agents, where N̂ is the smallest
power of 2 which is at least N+kT . We increase the number
of players because we want this strategy of the Adversary to
be tuple injective, by which we mean that it never has the
same set of tuples in a conflict in two different rounds. This
can be achieved by using additional kT ’dummy’ agents.
Let us numerate these agents by air for r = 1, . . . , T ,
i = 1, . . . , k. The agent air disapproves the i-th option in
the r-th round, and apart from that, this agent approves ev-
erything every time. This does not increase the tuple conflict
number of any play. Indeed, take any tuple that includes a
new agent air on the j-th position. This tuple can be in the
conflict only once, in the i-th round, and only if i = j. Like-
wise, the strategy still guarantees Dn,t,c-dissatisfaction by
for the initial agents. On the other hand, the r-th round is the
only round in which the tuple (a1r, . . . , a

k
r) is in the conflict,

which implies tuple injectivity.
The algorithm takes the maximal ℓ such that 2ℓ < Dn,t,c.

Then the algorithm simulates a play against this injective
strategy of the Adversary in the game with N̂ agents ac-
cording to the following counter-strategy (identifying agents
with binary strings of length n̂ = log2 N̂). In the r-th round,
for θ ∈ {1, . . . , k}, let Sr

θ ⊆ {0, 1}n̂ be the set of agents

disapproving the θ-th option. Define Πr = Sr
1 × . . . × Sr

k .
Note that Πr is exactly the set of k-tuples in a conflict in
this round. If Πr is empty, meaning that Sr

θ is empty for
some θ ∈ {1, . . . , k}, we choose the option θ, thus making
all agents satisfied. Otherwise, we start obtaining better and
better upper bounds on the conditional Kolmogorov com-
plexity by running the optimal decompression on all inputs.
If for some θ ∈ {1, . . . , k} we find out that C(Πr |xθ) < l
for every agent xθ ∈ Sr

θ , we choose the option θ and the
game continues, unless this was already the last round. If it
never finds such θ, the algorithm goes into an infinite loop
without finishing.

Let us start by observing that the algorithm Alg(n, t, c)
cannot terminate all T rounds of the game. This is because
the strategy of the Decision Maker that it uses guarantees
that every agent is dissatisfied at most 2l < Dn,t,c times.
Indeed, each time an agent x ∈ {0, 1}n was dissatisfied, it
is because of some non-empty Πr with C(Πr |x) < l. There
are at most 2l such Πr, and each can appear in at most one
round due to tuple injectivity.

Hence, there exists r ∈ {1, . . . , T} such that the algo-
rithm never halts when processing Πr. This means that for
every option θ ∈ {1, 2, . . . , k} there is an agent xθ ∈ Sr

θ
with C(Πr |xθ) ⩾ l (otherwise we would eventually have
found all optimal upper bounds on the conditional Kol-
mogorov complexity for some option θ). By Proposition 2,
we obtain that:

kℓ ⩽ (k − 1)C(Πr) + i(Πr) +O(log(i(Πr) + n̂)) (8)
Now we bound both C(Πr) and i(Πr). We notice that Πr

can be identified knowing r, n, t, c, by running Alg(n, t, c)
and outputting Πr. As r ⩽ T = 2t, we need t+O(log(ntc))
bits for that, obtaining the upper bound C(Πr) ⩽ t +
O(log(ntc)). We now obtain an upper bound on i(Πr). We
notice that any given tuple (x1, . . . , xk) can belong to Πr for
at most C = 2c different r because of the C-conflict con-
dition. Hence, to describe Πr given (x1, . . . , xk), we need
O(log(ntc)) bits to describe numbers n, t, c, and also c bits
to describe the index of Πr among all these sets of k-tuples
that contain our tuple, in the same order in which these sets
appear during the work of Alg(n, t, c). This gives an upper
bound i(Πr) ⩽ c+O(log(ntc)).

Recalling that ℓ was chosen as the maximal ℓ ⩾ 0 such
that 2ℓ < Dn,t,c, meaning that 2ℓ+1 ⩾ Dn,t,c, we get from
(8) that k log2 Dn,t,c ⩽ (k − 1)t+ c+O(log(cn̂t)). which
after the exponentiation gives us an upper bound:

Dn,t,c ⩽ (2t)1−
1
k (2c)

1
k · (cn̂t)O(1)

= T 1− 1
k · (lnC · ln N̂ · ln(T))O(1).

We have that N̂ = O(N + T), meaning that N̂ can be re-
placed by N in the bound. Finally, we notice how to get rid
of T in the logarithm. This is because we may assume that
T ⩽ C · Nk. Indeed, the number of rounds where we can-
not satisfy everyone is bounded by CNk because any such
round has at least one k-tuple in a conflict. Therefore, any
bound on the dissatisfaction we have for T = CNk are also
true for all larger T , by satisfying everybody whenever it is
possible and playing according to the optimal strategy for
T = CNk.

Proof of Theorem 3
As in the introduction, we assume that agents vote to go ei-
ther to eat pizza or to eat curry. For the simple majority vote,
we can make the (2T + 1)st agent dissatisfied T times by
making, in the r-th round, the (2T + 1)-st agent approv-
ing only pizza, the 2r − 1-st and the 2r-th agent approving
only curry, and the rest approving both. Each time, curry
gets more votes, and the (2T + 1)-st agent is dissatisfied all
the time. To show that the 1-conflict condition is fulfilled,
consider any set of agents A of size at most 2. If A is in the
conflict, there has to be an agent, dissatisfied with curry, this
has to be the (2T+1)st agent. The other agent in A has to be
dissatisfied with pizza, and for every agent, there is at most
1 round like that.

For the lower bound against any compassionate strategy,
we will use the following terminology: an agent becomes
“indifferent” means that from now on, it can only approve
both options. We start by making 1 approving only pizza, 2
approving only curry, and 3, 4, ..., N approving both. The
Decision Maker chooses one of the options, making either
1 or 2 dissatisfied. Without loss of generality, assume that 1
was satisfied. We make 1 indifferent, “forgetting” about this
agent. In the next round, we make 2 approving only pizza,
and 3, 4, ..., N approving only curry. The agent 2 is currently
a single dissatisfied agent, meaning that any compassionate
strategy will satisfy 2, choosing pizza and dissatisfying 3, 4,
..., N . We now make 2 indifferent, forgetting it, and repeat
the same 2 rounds with 3, 4, ..., N . In more detail, we main-
tain an invariant that after 2r rounds, agents 1, 2, . . . , 2r are
indifferent, agents 2r + 1, . . . , N have never been in a con-
flict with each other and their dissatisfaction is r and is max-
imal, and that every size-2 set was in a conflict at most once.
Repeating the same two rounds with 2r + 1 and 2r + 2 in
place of 1, 2, we maintain the invariant from r to r+1, hav-
ing in the end dissatisfaction ⌊T/2⌋.

Acknowledgments
Kozachinskiy is funded by the National Center for Artifi-
cial Intelligence CENIA FB210017, Basal ANID. Shen is
funded by the FLITTLA ANR-21-CE48-0023 grant. Steifer
received generous support from the Millennium Science Ini-
tiative Program - Code ICN17002 and the Agencia Nacional
de Investigación y Desarrollo grant no. 3230203.

References
Bulteau, L.; Hazon, N.; Page, R.; Rosenfeld, A.; and Tal-
mon, N. 2021. Justified representation for perpetual voting.
IEEE Access, 9: 96598–96612.
Chandak, N.; Goel, S.; and Peters, D. 2024. Proportional
aggregation of preferences for sequential decision making.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, 9573–9581.
Elkind, E.; Neoh, T. Y.; and Teh, N. 2024. Temporal Elec-
tions: Welfare, Strategyproofness, and Proportionality. In
ECAI 2024, 3292–3299. IOS Press.
Lackner, M. 2020. Perpetual voting: Fairness in long-term
decision making. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, 2103–2110.

Lackner, M.; and Maly, J. 2023. Proportional decisions in
perpetual voting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, 5722–5729.
Littlestone, N.; and Warmuth, M. K. 1994. The weighted
majority algorithm. Information and computation, 108(2):
212–261.
Romashchenko, A. 2001. Inequalities for Kolmogorov Com-
plexity and Common Information. Ph.D. thesis, Lomonosov
Moscow State University.
Romashchenko, A.; and Zimand, M. 2019. An operational
characterization of mutual information in algorithmic infor-
mation theory. Journal of the ACM (JACM), 66(5): 1–42.
Shen, A.; Uspensky, V. A.; and Vereshchagin, N. 2022. Kol-
mogorov complexity and algorithmic randomness, volume
220. American Mathematical Society.
Vovk, V. G. 1990. Aggregating strategies. In Proceedings of
the third annual workshop on Computational learning the-
ory, 371–386.

